Mata Kuliah Matematika Realistik dan Etnomatematika (2 SKS)

Deskripsi Mata Kuliah :

Pengkajian konsep matematika realistik dan etnomatematika yang meliputi konsep budaya dan konteks pendidikan Matematika di Indonesia, konsep matematika realistik, karakteristik dan prinsip matematika realistik, aplikasi konsep matematika realistik, konsep etnomatematika, integrasi budaya dan matematika, pemanfaatan budaya atau tradisi di Indonesia yang bernilai etnomatematika, dan penelitian rancangan (design research) tentang matematika realistick dan multikultur. Perkuliahan diawali dengan paparan konsep dan prinsip, penugasan dan diskusi dengan mahasiswa, serta presentasi dengan pemanfaatan TIKdengan sistem penilaian meliputi penugasan (30%), partisipasi (20%), penilaian tengah semester (20%) dan penilaian akhir semester (30%).

Capaian Mata Kuliah :
  1. Mendeskripsikan konsep matematika realistik dan etnomatematik sesuai sikap ilmiah dan kritis; (CPL-4, CPL-5)
  2. Menganalisis konsep-konsep matematika realistik dan etnomatematika dengan argumen yang efektif dan komunikatif; (CPL-4, CPL-5)
  3. Menerapkan konsep matematika realistik dan etnomatematika untukmenyelesaikan pendidikan matematika (CPL-4, CPL-5)
Sumber Rujukan :
  1. Ascher, Marcia. (1991).Ethnomathematics: A Multicultural View of Mathematics Ideas. Pasific Grove: Brooks/Cole Publishing Company
  2. Fauzan, A. (2002).Applying Realistic Mathematics Education (RME) in teaching geometry in Indonesian primary schools(p. 346). University Of Twente [Host].
  3. Franscois, Karen and Van Kerkhove, Bart. (2011)..Ethnomathematics and The Philosophy of Mathematics (Education). In Benedikt Lowe, Thomas Muller (eds).PhiMSAMP. Philosophy of Mathematics: Sociological Aspects and Mathematical Practice. College Publications, London. 2010. Texs in Philosophy 11; pp.121-154.
  4. Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics education: A calculus course as an example.Educational studies in mathematics,39(1-3), 111-129.
  5. Mesquita, Monica, Restivo, Sal. & D’Ambrosio, Ubiratan. (2011).Asphalt Children and City Streets: A Life, A City, and A Case Study of History, Culture, and Ethnomathematics in Sao Paulo. ROTTERDAM: SENSE PUBLISHER.
  6. Powell, Arthur B. & Frankenstein, Marilyn (Eds). (1997).Ethnomathematics: Challenging Eurocentrism in Mathematics Education. New York: State University of New York Press.
  7. Van den Heuvel-Panhuizen, M. H. A. M. (1996).Assessment and realistic mathematics education(Vol. 19). Utrecht University.
  8. Van Den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage.Educational studies in Mathematics,54(1), 9-35.
  9. Van den Heuvel-Panhuizen, M., & Drijvers, P. (2014). Realistic mathematics education.Encyclopedia of mathematics education, 521-525
  10. Van den Heuvel-Panhuizen, M. (1998). Realistic Mathematics Education as work in progress.Theory into practice in Mathematics Education. Kristiansand, Norway: Faculty of Mathematics and Sciences.[
  11. Wubbels, T., Korthagen, F., & Broekman, H. (1997). Preparing teachers for realistic mathematics education.Educational Studies in Mathematics,32(1), 1-28. Zaranis, N., Kalogiannakis, M., & Papadakis, S. (2013). Using mobile devices for teaching realistic mathematics in kindergarten education.Creative Education,4(7), 1-10.

© 2025. Develop BY PPTIx UNESA TEAM